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Second mechanism for transitions in a reaction diffusion system
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We report two mechanisms occurring in reaction diffusion systems that lead to the same sequence of
patterns, from activator rich islands to labyrinths to activator depleted well patterns. One mechanism, attributed
to saturation of the activator, arises when the activator kinetics are varied and has been previously observed.
The mechanism reported here occurs when the inhibitor kinetics are varied. It is signaled by an abrupt shift in
the pattern roughness as each pattern emerges and little change in the characteristic wave number. The
behavior of the average inhibitor and average activator concentrations also illustrates the difference between
these two mechanisms. Finally, we present a quantity that shows little change when the inhibitor kinetics drive
the transition, but exhibits marked changes when the activator kinetics are varied. To identify the pattern
forming region, the conditions for a Turing instability are expressed simply in terms of the Jacobian and
diffusion coefficient matrix for a general reaction diffusion system, and then used to confirm the results of our
numerical simulationd.51063-651X%99)02803-3

PACS numbes): 87.10:+e, 82.20.Mj, 47.54¢r, 82.40.Ck

I. INTRODUCTION quired for a Turing instability in a general reaction diffusion
system written simply in terms of the Jacobian and diffusion
Patterns formed by animal coaf&—3], nematic liquid matrices.
crystals[4], chemical reactiong5—7, ferro fluids[8,9], and

other physical systems are qualitatively very similar. A com- Il. COMPARISONS OF TRANSITIONS DRIVEN

mon feature in these systems is the presence of two or more BY KINETICS

competing elements. These elements can be described ge- - ) ) ) )
nerically as the activator and the inhibitdr], with the acti- Linear stability analysigAppendix,[2]) and simulations

vator possessing self-enhancing or autocatalytic behavidi@n be used to identify the parameter regions in which Tur-

and the inhibitor diffusing rapidly compared to the activatoriNd Ppatterns can occur. As an example, the GM model in

and squelching its spread. dimensionless forril,14], with basic production terms set to
Mathematically, this type of behavior is captured by aZ€ro can be written as

two-component reaction diffusion system )

a
_ 2 _
a,=D,V%a+f(a,h), (19 a=DVia+ (1+xadh (8
h,=D,V?h+g(a,h), (1b) h,=V2h+ u(a?—h). (2b)

in which f andg are the kinetics linking the activatarand  The parametek allows the activator to saturatb, is a ratio
the inhibitor h, which will always be nonlineai2]. Patterns of the diffusion coefficients of the activator and inhibitor
can form in this system due to a Turing instability, in which (D,/Dy), and u is a ratio of the removal ratesuf,/u,).
the system is stable to small perturbations from the steadfigure 1 illustrates the agreement between the region of the
state in the absence of diffusion but unstable when diffusiorfuring instability, as obtained by linear stability analysis
is presen{10,2]. The premise is that perturbations from the (solid lineg, and the boundary of the pattern formation re-
steady state grow exponentially until the nonlinear terms begion determined from our simulatiofisquares The hatched
come significant growth limiters, leading to spatial inhomo-region indicates where all of the conditions for a Turing in-
geneities in concentratiodg]. This and other scenarios for stability are met.
pattern formation have been confirmed by simulations of Previous studiefl] have indicated that islands of higher
systems of this form, such as the Gierer-Meinha@w) activator concentration form fot=0, and labyrinth patterns
model [1], the Gray-Scott mode[11], and the Fitzhugh- occur due to saturation effects oneeis sufficiently in-
Nagumo model12,13. Patterns can be formed by wave creased from zero. Previously unreported though is the exis-
front interactions of two competing steady staff&g] or by  tence of labyrinth patterns occurring &t 0, which we have
local activator and/or inhibitor concentratioffs11,13. obtained by changing the ratio of removal rajesin the

In the current study, we present patterns seen by simuldnhibitor kinetics. Figure 2 illustrates the regions of param-
tion of the GM model, and then show how, within the Turing eter space in which various patterns form. In region I, stable
region, the transitions in the island to labyrinth to well se-activator rich islands form for smalt [Fig. 3(a)]. As « in-
guence can occur in two different ways depending uporcreases, local activator levels saturate, islands merge, and
whether the transition is driven by the activator or the inhibi-activator rich regions are more likely to have activator rich
tor kinetics. Included in the Appendix are the conditions re-neighbors. Patterns within region Il evolve from the merging
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FIG. 1. Comparison of the region of the Turing instability, as  FIG. 2. Results of computer simulation of the Gierer-Meinhardt
obtained by linear stability analysisolid lineg, and the boundary ~model given by Eq(2). Patterns include spots or islan@egion ),
of the pattern formation region determined from our simulationslabyrinth or coexisting islands and labyrintfregion 1)), and well
(squaresfor the Gierer-Meinhardt model. The hatched region indi- patterns(region Ill). (a) Phase diagram im-D space fork=0.0.
cates where all of the conditions for a Turing instability are rt@t.  (b) Phase diagram im-D space fork=1.0. (c) Phase diagram in
k=0.0, (b) k=0.5, and(c) k=1.0. u-k space forD =0.05.

of the islands of Fig. @) and are characterized by elongated proximation of Eq.(2) with periodic boundary conditions
structures or stripeld=ig. 3(b)]. In this region, there are sev- (see[15]). Patterns shown are developed from initial condi-
eral other varieties of patterns that may form, dependingdions given by random spatial fluctuations {0%) about the
upon parameter values and the initial conditions. For smalsteady state foa andh, and simulations are run for 100 000
values of u, the most prevalent pattern contains stripestime steps allowing all of the patterns to form fully. Other
which may be straighfFig. 3(c)] or wavy [Fig. 3(d)] de- random initial conditions give qualitatively the same patterns
pending upon initial conditions. For larget, fully con-  for the same parameter choices.
nected labyrinth pattern§Fig. 3(e)] dominate, however, Within the region of Turing patterns, of particular interest
spiral-like patterngFig. 3(f)] and stripes are also observed. are the mechanisms that lead to transitions from one type of
For k=1.0, labyrinth segments and full labyrinth structurespattern to another. Using the GM model as an example, we
are also seefFigs. 3h,i)]. These patterns, although qualita- show that changes in kinetics lead to two qualitatively dif-
tively similar to those forx= 0.0, contain more defects. We ferent types of transitions from island to labyrinth to well
have tested a range of system sizes, fromx40 to  patterns. The first occurs asis increased whil® andu are
500% 500, and find that labyrinths are favored over stripes irfixed and can be understood in terms of allowing the activa-
larger systems. Region Il is populated by a well patterntor to saturate at lower values. This mechanism has been
formed by activator depleted regioffSig. 3(g)]. All of these  discussed previousksee[1]). The second is seen by increas-
patterns are stationary. ing u with k andD fixed and corresponds to an increase in
The simulations are done using a finite difference apthe rate at which the inhibitor is removed from the system. A
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FIG. 3. Examples of patterns on a>@0 grid with gray scale
indicating concentration of the activator; higher-density regions are
darker.(a) Island patternk=0.0, u=2.0, andD = 0.05.(b) Merg-

Wave Number Squared
/
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ing islands;x=0.0, u=4.0, andD=0.036. (c) Stripe pattern;x 0.0 +—t ————

=0.0, ©=2.0, andD=0.08. (d) Wavy stripes:x=0.32, u=1.1, 2.7 Ratio of Removal Rates,ji 34

and D=0.04. (e) Labyrinth pattern; k=0.0, ©=5.0, and D i .
=0.031.(f) Spiral-like labyrinth; x=0.0, ©=5.0, andD =0.032. FIG. 4. Range of wave number that can grow according to linear

stability analysis for qualitatively similar series of transitions be-
tween patterns. Solid lines define this range vkithandk_ repre-
senting, respectively, the largest and smallest wave number allowed
to grow, while the dotted line shows the fastest growing wave num-

look at Eq.(2b) shows thatu can be thought of as the perasafunctiqn ofdriving parameter'vyith fix@d:0.0S.(a) Driy-
ing parameter isc with w=1.0. (b) Driving parameter isu with

strength of the inhibitor kinetics. An increase jinboth in- =00

creases the amount of inhibitor produced in activator rich e

regions, and decreases the amount of inhibitor produced in

inhibitor rich regions. These features can combine to producgiding more inhibitor in activator rich regions.

an effect similar to enhanced saturation of the activator. Another distinct difference is that driving the transitions
Both of these transitions can be understood by examiningvith k moves the system away from the Turing poiit, (

Fig. 2(c). Although the sequences of patterns are the same ir-k_), increasing the range of wave number that can grow.

these two cases, there are quantities in which distinct differHowever, when driving the transitions with, the system

ences can be seen depending upon whether the activator kiroves toward the Turing point, decreasing the range of wave

netics « or inhibitor kineticsu are driving the transitions. number that can grow.

The following sections describe these quantities and how

they differ for the choice of driving parameter.

(g) Well pattern;x=0.0, w=2.0, andD =0.085.(h) Labyrinth seg-
ments; k=1.0, ©u=2.0, andD=0.004. (i) Defect-rich labyrinth;
x=1.0, u=1.0, andD=0.007.

B. Average concentration

Pattern sequences driven by eitheor u are accompa-
i _ nied by discontinuities in the slope of the average activator
_ The range of wave number that grows, obtained usingnq inhibitor concentrations at each transiti@ig. 5. The
linear stability analysis as shown in the Appendix, can bé&atern change corresponding to a slope discontinuity can be
plotted as a function of our two driving parameterandu. a5 subtle as the rearrangement of islands or as dramatic as
Figure 4 shows this range as well as the fastest growingypyrinths breaking up to form wells.
wave numberi.e., largestw). For both of these plots, the  (ysing « as the driving parametéFig. 5a)], we see the
transitions from islan_d to labyrinth to well patterns take p|aceaverage inhibitor concentration fall off very rapidly asis
moving from left to right on the graphs. increased from zero. | is driving the transitiodFig. 5b)],

When the transitions are driven lyywe see that the fast- \ye see a different trend in which the average activator and
est growing wave number incread€sg. 4@)]. This trend is  jnpibitor concentrations mirror each other in the sense that
verified in simulations where the island size changes as g changes taking place in the average activator concentra-

function of x. On the other hand, the fastest growing wavetion also take place in the average inhibitor concentration.
number remains essentially constant as a functiop {fFig.

4(b)] and, once again, simulations verify this feature by ex-
hibiting constant island size. These results suggest that in-
creases ink change the island size until a critical size is ~Another important difference is seen in the pattern rough-
obtained above which the islands must begin to mergeness, defined aR=[(|Va|?+|Vh|?)dr (see[16] and[2]).
whereas increases pa prevent islands from growing by pro- This is not an energy in the Liapunov or Hamiltonian sense

A. Characteristic wave number

C. Pattern roughness
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driving parameter for transitions between patterns with fixed
=0.05.(a) Driving parameter isc with x=1.0.(b) Driving param-
eter isu with x=0.0.

FIG. 5. Average activatofsolid line) and inhibitor(dotted ling
concentrations as a function of driving parameter with fixad
=0.05.(a) Driving parameter isc with w=1.0. (b) Driving param-
eter isp with «=0.0.

In the case of stationary patterres €0 andh,=0), [16] can

be applied and Eq4) reduces to
but rather a quantitative measure of the inhomogeneity of the PP a4

pattern. As shown in Fig. 6, this roughness remains smooth
through the transitions as is varied, but can display sharp Eazf
jumps if changes i are driving the transitions. The mag-

a® 1 1

— ———— — ——[a/k—arctania dr,
2h Lo el hio. Vi ay)]

nitudes of these jumps are sensitive to the details of the ini- (53
tial conditions. This difference can be understood in light of
what was said earlier about the island size changing as a Eh:f [ — pa2hldr. (5b)

function of « but not u.

A graph of\/Ea2+ Ezh for stationary patternffrom Eq. (5)],
shown in Fig. 7, displays dramatic changewer law decay
Using a variational approach, any reaction diffusion sys-of this quantity when the transitions are driven with This
tem in the form of Eq(1) can be written as same quantity shows little chandearying by only 15%
through entire scan range @f), however, when the transi-
tions are driven withu. It is worth mentioning that a gradi-
a=— oEq ho=— % &) ent system with a Liapunov functionaE{=E,) requires
da’ ! oh’ that 9f/9h= dg/9a. However, fora to be the activator of,
dglda>0, and forh to be the inhibitor ofa, ¢f/dh<<0. Thus
no activator-inhibitor systerfincluding Eqg.(2)] can be writ-
ten as a gradient system with a Liapunov functional.

D. Variational approach

For the GM modelE, andE,, become

E.= f

Ill. CONCLUSIONS
1

hy/x3

[a\k—arctariayk)]+ Eaz dr, We have shown that a classic activator-inhibitor system

2 can produce a wide variety of Turing patterns, with transi-

(48) tions occurring by two different mechanisms, activator satu-

ration or inhibitor removal. Distinct differences between
these mechanisms are quantified using the GM model as an
example. Transitions driven by activator saturation are char-
acterized by smooth changes in the apparent wavelength of

1 v
EDa|Va| -

Eh:f[%Dh|€h|2_ﬂ(a2h_% %)]dr. (4b)
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FIG. 7. Quantity\/Ea2+ E2h as a function of driving parameter
for transitions between patterns with fixéal=0.05. (@) Driving FIG. 8. (a) Dispersion relation obtained using linear stability
parameter is« with ©=1.0. (b) Driving parameter isu with & analysis from the Gierer-Meinhardt model shown for value®of
=0.0. greater than, less than, and equaldashed lingthe criticalD, D.. .

Regions of positivev indicate cases in which fluctuations will grow
possibly forming an inhomogeneous patteth). 7(k?), function
the pattern, while transitions due to increasing the inhibitoused to determine quantities suchl@sassociated with the fastest
removal rate exhibit no change in the apparent wavelength dgfrowing mode.
the pattern.
Our simulations are in excellent agreement with the gen-
eral conditions for a Turing instability, derived for a two- only if <O for some range of wave number. A typical
component reaction diffusion system using linear stabilitygraph of 7(k?) and the real part ob(k?), done for the GM
analysis. model [Eq. (2)], is shown in Fig. 8 and illustrates that for
Turing patterns it is sufficient to require that the minimum
value of #<0. The wave numbek, associated with the

APPENDIX minimum value of 7,7, is given by ki=(7a7p

—7ap)/2Ap .
Linear stability analysis for Ec(1) yields the dispersion  Sincek must be real, the condition,p— 74p>0 must
relation be met. Substitutingk3 into Eq. (Alb) yields 7y=An

—(7aTp— Tap)?/4A <0 which provides our last condition
(actually two conditions due to the quadratic(7a7p
20(K?)=Ta—K?1p % (1A= K?1p)* — 47(K?), —7ap)?—4ApA,>0.
(Ala) When these four conditions are satisfied, a range of wave
numberk? <k?<k? exists for which perturbations from the
) , 4 steady state will grow exponentially with the possibility of
(k%) =Aa—K*(7a7p— 7ap) + Apk®, (Alb)  patterns forming due to the nonlinear kinetics. This range
can be determined from the zeroesphs

wherer is used to represent the trace of the matrix noted in 1
the subscript and likewisa represents the determinant. The 2 = (7, 70— 7,5+ \(7a7p— Tap)2— 4A A D).
matrix D is a diagonal matrix of the diffusion coefficients - 2Ap
andA is the Jacobian matrix dfandg.

For a Turing instabilitycompare td1,2]), in the absence
of diffusion (k?=0), the requirement thai<0 leads to two  For a finite system discrete values lofare allowed, which
conditions, 7,<0 and A,>0. If diffusion is present K>  depend on the boundary conditions and system size. If the
>0), thenw>0 for a Turing instability. With the restric- system does form a Turing pattern, it will be characterized
tions imposed by the first two conditions, the third can occuby a wave number within the range given by E42).

(A2)
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