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Second mechanism for transitions in a reaction diffusion system

F. Marty Ytreberg and Susan R. McKay
Department of Physics and Astronomy, University of Maine, Orono, Maine 04469-5709

~Received 20 May 1998; revised manuscript received 25 August 1998!

We report two mechanisms occurring in reaction diffusion systems that lead to the same sequence of
patterns, from activator rich islands to labyrinths to activator depleted well patterns. One mechanism, attributed
to saturation of the activator, arises when the activator kinetics are varied and has been previously observed.
The mechanism reported here occurs when the inhibitor kinetics are varied. It is signaled by an abrupt shift in
the pattern roughness as each pattern emerges and little change in the characteristic wave number. The
behavior of the average inhibitor and average activator concentrations also illustrates the difference between
these two mechanisms. Finally, we present a quantity that shows little change when the inhibitor kinetics drive
the transition, but exhibits marked changes when the activator kinetics are varied. To identify the pattern
forming region, the conditions for a Turing instability are expressed simply in terms of the Jacobian and
diffusion coefficient matrix for a general reaction diffusion system, and then used to confirm the results of our
numerical simulations.@S1063-651X~99!02803-2#

PACS number~s!: 87.10.1e, 82.20.Mj, 47.54.1r, 82.40.Ck
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I. INTRODUCTION

Patterns formed by animal coats@1–3#, nematic liquid
crystals@4#, chemical reactions@5–7#, ferro fluids@8,9#, and
other physical systems are qualitatively very similar. A co
mon feature in these systems is the presence of two or m
competing elements. These elements can be described
nerically as the activator and the inhibitor@1#, with the acti-
vator possessing self-enhancing or autocatalytic beha
and the inhibitor diffusing rapidly compared to the activa
and squelching its spread.

Mathematically, this type of behavior is captured by
two-component reaction diffusion system

at5Da¹2a1 f ~a,h!, ~1a!

ht5Dh¹2h1g~a,h!, ~1b!

in which f andg are the kinetics linking the activatora and
the inhibitorh, which will always be nonlinear@2#. Patterns
can form in this system due to a Turing instability, in whic
the system is stable to small perturbations from the ste
state in the absence of diffusion but unstable when diffus
is present@10,2#. The premise is that perturbations from th
steady state grow exponentially until the nonlinear terms
come significant growth limiters, leading to spatial inhom
geneities in concentrations@2#. This and other scenarios fo
pattern formation have been confirmed by simulations
systems of this form, such as the Gierer-Meinhardt~GM!
model @1#, the Gray-Scott model@11#, and the Fitzhugh-
Nagumo model@12,13#. Patterns can be formed by wav
front interactions of two competing steady states@12# or by
local activator and/or inhibitor concentrations@1,11,13#.

In the current study, we present patterns seen by sim
tion of the GM model, and then show how, within the Turin
region, the transitions in the island to labyrinth to well s
quence can occur in two different ways depending up
whether the transition is driven by the activator or the inhi
tor kinetics. Included in the Appendix are the conditions
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quired for a Turing instability in a general reaction diffusio
system written simply in terms of the Jacobian and diffus
matrices.

II. COMPARISONS OF TRANSITIONS DRIVEN
BY KINETICS

Linear stability analysis~Appendix, @2#! and simulations
can be used to identify the parameter regions in which T
ing patterns can occur. As an example, the GM mode
dimensionless form@1,14#, with basic production terms set t
zero can be written as

at5D¹2a1
a2

~11ka2!h
2a, ~2a!

ht5¹2h1m~a22h!. ~2b!

The parameterk allows the activator to saturate,D is a ratio
of the diffusion coefficients of the activator and inhibito
(Da /Dh), and m is a ratio of the removal rates (mh /ma).
Figure 1 illustrates the agreement between the region of
Turing instability, as obtained by linear stability analys
~solid lines!, and the boundary of the pattern formation r
gion determined from our simulations~squares!. The hatched
region indicates where all of the conditions for a Turing i
stability are met.

Previous studies@1# have indicated that islands of highe
activator concentration form fork50, and labyrinth patterns
occur due to saturation effects oncek is sufficiently in-
creased from zero. Previously unreported though is the e
tence of labyrinth patterns occurring atk50, which we have
obtained by changing the ratio of removal ratesm in the
inhibitor kinetics. Figure 2 illustrates the regions of para
eter space in which various patterns form. In region I, sta
activator rich islands form for smallk @Fig. 3~a!#. As k in-
creases, local activator levels saturate, islands merge,
activator rich regions are more likely to have activator ri
neighbors. Patterns within region II evolve from the mergi
3376 ©1999 The American Physical Society
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of the islands of Fig. 3~a! and are characterized by elongat
structures or stripes@Fig. 3~b!#. In this region, there are sev
eral other varieties of patterns that may form, depend
upon parameter values and the initial conditions. For sm
values of m, the most prevalent pattern contains strip
which may be straight@Fig. 3~c!# or wavy @Fig. 3~d!# de-
pending upon initial conditions. For largerm, fully con-
nected labyrinth patterns@Fig. 3~e!# dominate, however
spiral-like patterns@Fig. 3~f!# and stripes are also observe
For k51.0, labyrinth segments and full labyrinth structur
are also seen@Figs. 3~h,i!#. These patterns, although qualit
tively similar to those fork50.0, contain more defects. W
have tested a range of system sizes, from 40340 to
5003500, and find that labyrinths are favored over stripes
larger systems. Region III is populated by a well patte
formed by activator depleted regions@Fig. 3~g!#. All of these
patterns are stationary.

The simulations are done using a finite difference

FIG. 1. Comparison of the region of the Turing instability,
obtained by linear stability analysis~solid lines!, and the boundary
of the pattern formation region determined from our simulatio
~squares! for the Gierer-Meinhardt model. The hatched region in
cates where all of the conditions for a Turing instability are met.~a!
k50.0, ~b! k50.5, and~c! k51.0.
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proximation of Eq.~2! with periodic boundary conditions
~see@15#!. Patterns shown are developed from initial con
tions given by random spatial fluctuations (610%) about the
steady state fora andh, and simulations are run for 100 00
time steps allowing all of the patterns to form fully. Oth
random initial conditions give qualitatively the same patte
for the same parameter choices.

Within the region of Turing patterns, of particular intere
are the mechanisms that lead to transitions from one typ
pattern to another. Using the GM model as an example,
show that changes in kinetics lead to two qualitatively d
ferent types of transitions from island to labyrinth to we
patterns. The first occurs ask is increased whileD andm are
fixed and can be understood in terms of allowing the acti
tor to saturate at lower values. This mechanism has b
discussed previously~see@1#!. The second is seen by increa
ing m with k andD fixed and corresponds to an increase
the rate at which the inhibitor is removed from the system

s

FIG. 2. Results of computer simulation of the Gierer-Meinha
model given by Eq.~2!. Patterns include spots or islands~region I!,
labyrinth or coexisting islands and labyrinths~region II!, and well
patterns~region III!. ~a! Phase diagram inm-D space fork50.0.
~b! Phase diagram inm-D space fork51.0. ~c! Phase diagram in
m-k space forD50.05.
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look at Eq. ~2b! shows thatm can be thought of as th
strength of the inhibitor kinetics. An increase inm both in-
creases the amount of inhibitor produced in activator r
regions, and decreases the amount of inhibitor produce
inhibitor rich regions. These features can combine to prod
an effect similar to enhanced saturation of the activator.

Both of these transitions can be understood by examin
Fig. 2~c!. Although the sequences of patterns are the sam
these two cases, there are quantities in which distinct dif
ences can be seen depending upon whether the activato
neticsk or inhibitor kineticsm are driving the transitions
The following sections describe these quantities and h
they differ for the choice of driving parameter.

A. Characteristic wave number

The range of wave number that grows, obtained us
linear stability analysis as shown in the Appendix, can
plotted as a function of our two driving parametersk andm.
Figure 4 shows this range as well as the fastest grow
wave number~i.e., largestv). For both of these plots, th
transitions from island to labyrinth to well patterns take pla
moving from left to right on the graphs.

When the transitions are driven byk we see that the fast
est growing wave number increases@Fig. 4~a!#. This trend is
verified in simulations where the island size changes a
function of k. On the other hand, the fastest growing wa
number remains essentially constant as a function ofm @Fig.
4~b!# and, once again, simulations verify this feature by e
hibiting constant island size. These results suggest tha
creases ink change the island size until a critical size
obtained above which the islands must begin to mer
whereas increases inm prevent islands from growing by pro

FIG. 3. Examples of patterns on a 40340 grid with gray scale
indicating concentration of the activator; higher-density regions
darker.~a! Island pattern;k50.0, m52.0, andD50.05.~b! Merg-
ing islands;k50.0, m54.0, andD50.036. ~c! Stripe pattern;k
50.0, m52.0, andD50.08. ~d! Wavy stripes;k50.32, m51.1,
and D50.04. ~e! Labyrinth pattern; k50.0, m55.0, and D
50.031. ~f! Spiral-like labyrinth;k50.0, m55.0, andD50.032.
~g! Well pattern;k50.0, m52.0, andD50.085.~h! Labyrinth seg-
ments;k51.0, m52.0, andD50.004. ~i! Defect-rich labyrinth;
k51.0, m51.0, andD50.007.
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viding more inhibitor in activator rich regions.
Another distinct difference is that driving the transition

with k moves the system away from the Turing point (k1

5k2), increasing the range of wave number that can gro
However, when driving the transitions withm, the system
moves toward the Turing point, decreasing the range of w
number that can grow.

B. Average concentration

Pattern sequences driven by eitherk or m are accompa-
nied by discontinuities in the slope of the average activa
and inhibitor concentrations at each transition~Fig. 5!. The
pattern change corresponding to a slope discontinuity ca
as subtle as the rearrangement of islands or as dramat
labyrinths breaking up to form wells.

Using k as the driving parameter@Fig. 5~a!#, we see the
average inhibitor concentration fall off very rapidly ask is
increased from zero. Ifm is driving the transition@Fig. 5~b!#,
we see a different trend in which the average activator
inhibitor concentrations mirror each other in the sense t
the changes taking place in the average activator conce
tion also take place in the average inhibitor concentration

C. Pattern roughness

Another important difference is seen in the pattern rou
ness, defined asR5*(u¹W au21u¹W hu2)drW ~see@16# and @2#!.
This is not an energy in the Liapunov or Hamiltonian sen

e

FIG. 4. Range of wave number that can grow according to lin
stability analysis for qualitatively similar series of transitions b
tween patterns. Solid lines define this range withk1 andk2 repre-
senting, respectively, the largest and smallest wave number allo
to grow, while the dotted line shows the fastest growing wave nu
ber as a function of driving parameter with fixedD50.05.~a! Driv-
ing parameter isk with m51.0. ~b! Driving parameter ism with
k50.0.
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but rather a quantitative measure of the inhomogeneity of
pattern. As shown in Fig. 6, this roughness remains smo
through the transitions ask is varied, but can display shar
jumps if changes inm are driving the transitions. The mag
nitudes of these jumps are sensitive to the details of the
tial conditions. This difference can be understood in light
what was said earlier about the island size changing a
function of k but notm.

D. Variational approach

Using a variational approach, any reaction diffusion s
tem in the form of Eq.~1! can be written as

at52
dEa

da
, ht52

dEh

dh
. ~3!

For the GM model,Ea andEh become

Ea5E F1

2
Dau¹W au22

1

hAk3
@aAk2arctan~aAk!#1

1

2
a2GdrW,

~4a!

Eh5E @ 1
2 Dhu¹W hu22m~a2h2 1

2 h2!#drW. ~4b!

FIG. 5. Average activator~solid line! and inhibitor~dotted line!
concentrations as a function of driving parameter with fixedD
50.05.~a! Driving parameter isk with m51.0. ~b! Driving param-
eter ism with k50.0.
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In the case of stationary patterns (at50 andht50), @16# can
be applied and Eq.~4! reduces to

Ea5E F a3

2h

1

11ka2
2

1

hAk3
@aAk2arctan~aAk!#GdrW ,

~5a!

Eh5E @2ma2h#drW. ~5b!

A graph ofAEa
21Eh

2 for stationary patterns@from Eq. ~5!#,
shown in Fig. 7, displays dramatic change~power law decay!
of this quantity when the transitions are driven withk. This
same quantity shows little change~varying by only 15%
through entire scan range ofm), however, when the transi
tions are driven withm. It is worth mentioning that a gradi
ent system with a Liapunov functional (Ea5Eh) requires
that ] f /]h5]g/]a. However, fora to be the activator ofh,
]g/]a.0, and forh to be the inhibitor ofa, ] f /]h,0. Thus
no activator-inhibitor system@including Eq.~2!# can be writ-
ten as a gradient system with a Liapunov functional.

III. CONCLUSIONS

We have shown that a classic activator-inhibitor syst
can produce a wide variety of Turing patterns, with tran
tions occurring by two different mechanisms, activator sa
ration or inhibitor removal. Distinct differences betwee
these mechanisms are quantified using the GM model a
example. Transitions driven by activator saturation are ch
acterized by smooth changes in the apparent wavelengt

FIG. 6. Pattern roughness, defined in the text, as a function
driving parameter for transitions between patterns with fixedD
50.05.~a! Driving parameter isk with m51.0. ~b! Driving param-
eter ism with k50.0.
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the pattern, while transitions due to increasing the inhib
removal rate exhibit no change in the apparent wavelengt
the pattern.

Our simulations are in excellent agreement with the g
eral conditions for a Turing instability, derived for a two
component reaction diffusion system using linear stabi
analysis.

APPENDIX

Linear stability analysis for Eq.~1! yields the dispersion
relation

2v~k2!5tA2k2tD6A~tA2k2tD!224h~k2!,
~A1a!

h~k2!5DA2k2~tAtD2tAD!1DDk4, ~A1b!

wheret is used to represent the trace of the matrix noted
the subscript and likewiseD represents the determinant. Th
matrix D is a diagonal matrix of the diffusion coefficien
andA is the Jacobian matrix off andg.

For a Turing instability~compare to@1,2#!, in the absence
of diffusion (k250), the requirement thatv,0 leads to two
conditions, tA,0 and DA.0. If diffusion is present (k2

.0), thenv.0 for a Turing instability. With the restric-
tions imposed by the first two conditions, the third can oc

FIG. 7. QuantityAEa
21Eh

2 as a function of driving paramete
for transitions between patterns with fixedD50.05. ~a! Driving
parameter isk with m51.0. ~b! Driving parameter ism with k
50.0.
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only if h,0 for some range of wave number. A typic
graph ofh(k2) and the real part ofv(k2), done for the GM
model @Eq. ~2!#, is shown in Fig. 8 and illustrates that fo
Turing patterns it is sufficient to require that the minimu
value of h,0. The wave numberk0 associated with the
minimum value of h,h0 is given by k0

25(tAtD

2tAD)/2DD .
Sincek must be real, the conditiontAtD2tAD.0 must

be met. Substitutingk0
2 into Eq. ~A1b! yields h05DA

2(tAtD2tAD)2/4DD,0 which provides our last condition
~actually two conditions due to the quadratic!, (tAtD
2tAD)224DDDA.0.

When these four conditions are satisfied, a range of w
numberk2

2 ,k2,k1
2 exists for which perturbations from th

steady state will grow exponentially with the possibility
patterns forming due to the nonlinear kinetics. This ran
can be determined from the zeroes ofh as

k6
2 5

1

2DD
„tAtD2tAD6A~tAtD2tAD!224DADD….

~A2!

For a finite system discrete values ofk are allowed, which
depend on the boundary conditions and system size. If
system does form a Turing pattern, it will be characteriz
by a wave number within the range given by Eq.~A2!.

FIG. 8. ~a! Dispersion relation obtained using linear stabili
analysis from the Gierer-Meinhardt model shown for values ofD
greater than, less than, and equal to~dashed line! the criticalD, Dc .
Regions of positivev indicate cases in which fluctuations will grow
possibly forming an inhomogeneous pattern.~b! h(k2), function
used to determine quantities such ask0 associated with the fastes
growing mode.
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